Quick launch:
Last version:
News:
--
Fluka Release
|
[ <--- prev -- ] [ HOME ] [ -- next ---> ] MULSOPTSets the tracking conditions for multiple Coulomb scattering (MCS), for both
FLUKA and EMF particles. Can also be used to activate single scattering.
WHAT(1) : controls the step optimisation for multiple Coulomb scattering, and the number of (possible) single scatterings on a material by material basis <= -1.0 : a possible previous request of optimisation is cancelled and the number of single scatterings in the materials indicated by WHAT(4)-WHAT(6) is reset to the default value (i.e. 0, or the global default possibly set previously by this option with SDUM = GLOBAL/GLOBHAD/GLOBEMF) = 0.0 : ignored = I0 + I1*10 + I2*100000 (with 0=< I0 =<1, 0=< I1 <10000, 0 =< I2 < 10000): I0 >= 1 : the optimisation is activated I1 - 1 = number of single scattering steps for hadrons and muons in the materials indicated by WHAT(4)-WHAT(6) I1 = 0 : ignored I2 - 1 = number of single scattering steps for electrons and positrons in the materials indicated by WHAT(4)-WHAT(6) I2 = 0 : ignored Default: -1.0 (no multiple scattering optimisation and no single scattering) WHAT(2) : |WHAT(2)| = 1.0: spin-relativistic corrections are activated for hadrons and muons at the 1st Born approximation level |WHAT(2)| = 2.0: spin-relativistic corrections are activated for hadrons and muons at the 2nd Born approximation level WHAT(2) < 0.0: nuclear finite size effects are activated. = -3.0: nuclear finite size effects (form factors) are considered but not the spin-relativistic effects WHAT(2) >= 3.0: multiple scattering for hadrons and muons is completely suppressed Default: 0.0 (no corrections) WHAT(3) : |WHAT(3)| = 1.0: spin-relativistic corrections are activated for e+ and e- at the 1st Born approximation level |WHAT(3)| = 2.0: spin-relativistic corrections are activated for e+ and e- at the 2nd Born approximation level WHAT(3) < 0.0: nuclear finite size effects are activated WHAT(3) >= 3.0: multiple scattering for e+ and e- is completely suppressed Default: 0.0 (no corrections) WHAT(4) = lower bound of the indices of the materials, or corresponding name, in which the corrections are activated ("From material WHAT(4)...") Default = 3.0 WHAT(5) = upper bound of the indices of the materials, or corresponding name, in which the corrections are activated ("... to material WHAT(5)...") Default = WHAT(4) WHAT(6) = step length in assigning indices ("...in steps of WHAT(6)") Default: 1.0 SDUM = FANO-ON : Fano correction for inelastic interactions on atomic electrons switched on (for the moment only for charged hadrons and muons) FANO-OFF: Fano correction for inelastic interactions on atomic electrons is switched off MLSH-ON : Moliere screening angle on for hadrons and muons MLSH-OFF: Moliere screening angle for hadrons and muons as modified by Berger & Seltzer for electrons Default: Fano correction on, original Moliere screening angle for hadrons on Default (option MULSOPT not given): no MCS optimisation For SDUM=GLOBAL/GLOBEMF/GLOBHAD: (GLOBEMF restricts the input value use to the EM part, GLOBHAD to the hadron and muon part) WHAT(1) : controls the minimum MCS step size used by the boundary approach algorithm for electron/positrons and charged heavy particles (in the multiple scattering routine) 0.2 > WHAT(1) >= 0.0 : ignored WHAT(1) >= 0.2 : the minimum step size is set equal to the size corresponding to B=5 in Moliere theory, multiplied by WHAT(1) < 0.0 : the minimum step is reset to default Default: WHAT(1) = 1 (maximum accuracy) WHAT(2) : index of step stretching factor tabulation to be used by the electron/positron transport algorithm when approaching a boundary. The values of the index implemented for the moment are 1,2,3,4. Values 11,12,13,14 cause the sensing algorithm to multiply the range/mcs step rather than the current step. Values 101,111,102,112,103,113,104,114 have the additional effect of making the algorithm resample as unphysical any step cut at a boundary and "reflected" from the boundary. = 0.0 : ignored < 0.0 : the tabulation index is reset to default Default: WHAT(2) = 1 (maximum accuracy) WHAT(3) : controls the optimal step to be used by the optimisation
option (and to some extent by the hadron/muon boundary approach
algorithm).
0.2 > WHAT(3) >= 0.0 : ignored
WHAT(3) >= 0.2 : the minimum step size is set equal to the size corresponding
to B = 5 in Molière theory [Mol47,Mol48,Mol55,Bet53],
multiplied by WHAT(3)
< 0.0 : the minimum step is reset to its default value
Default: minimum step equal to that corresponding to B=5,
multiplied by 20
WHAT(4) > 0: single scattering option activated at boundaries or for too short steps < 0: resets to default = 0: ignored Default: single scattering not activated WHAT(5): (meaningful only if single scattering is activated at boundaries and when step is too short: see WHAT(4) above) > 0: single scattering option activated for energies too small for Molière theory to apply < 0: not activated = 0: ignored Default: not activated WHAT(6): (meaningful only if single scattering is activated at boundaries and when step is too short: see WHAT(4) above) > 0: number of single scatterings to be performed when crossing a boundary = 0: ignored < 0: resets the default Default: 1 Notes:
Example 1 (number based): * Activate spin-relativistic corrections and nuclear finite size effects * for heavy charged particles in the first Born approximation. * Activate spin-relativistic corrections but not nuclear size effects * for electrons and positrons in materials 5, 10 and 15 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 MULSOPT 1.0 -1.0 2.0 5.0 15.0 5.0 The same example, name based: *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 MULSOPT 1.0 -1.0 2.0 BERYLLIU GOLD 5.0 Example 2: * Maximum accuracy requested for the electron step size used in the boundary * approach and in the optimisation algorithm. Single scattering activated for * electrons at boundary crossing and when the step is too short for Moliere * (but not when the energy is too low for Moliere). Boundaries will be * crossed with 2 single scatterings. *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 MULSOPT 1.0 1.0 1.0 1.0 0.0 2. GLOBEMF Example 3: * Single scattering activated everywhere for all charged particles *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 MULSOPT 0.0 0.0 0.0 1.0 1.0 99999999.GLOBAL |
© FLUKA Team 2000–2024