Quick launch:
Last version:
News:
--
New Fluka Major Release
|
[ <--- prev -- ] [ HOME ] [ -- next ---> ] RESNUCLEiScores residual nuclei produced in inelastic interactions on a region basis. WHAT(1) : type of products to be scored = 1.0 : spallation products (all inelastic interactions except those induced by neutrons below the threshold for multigroup treatment) = 2.0 : low energy products, i.e. those produced by neutrons below the threshold for multigroup treatment (provided the information is available, see Note 1). = 3.0 : all residual nuclei are scored (if available, see above) <= 0.0 : resets the default (= 1.0) Default = 1.0 WHAT(2) = logical output unit > 0.0 : formatted data are written on the WHAT(2) unit < 0.0 : unformatted data are written on the |WHAT(2)| unit Values of |WHAT(1)| < 21 should be avoided (with the exception of WHAT(1) = +11). = 0.0 : resets the default = 11.0 Default = 11.0 (standard output unit) WHAT(3) = Maximum atomic number Z of the residual nuclei distribution Default: according to the Z of the element(s) of the material assigned to the scoring region WHAT(4) = Maximum M = N - Z - (NMZ)_min of the residual nuclei distribution (see Notes 2 and 3 below) Default: according to the A, Z of the element(s) of the material assigned to the scoring region. WHAT(5) = scoring region number or name = -1: all regions (see Note 10) Default = 1.0 WHAT(6) = volume of the region in cm**3 Default = 1.0 SDUM = any character string identifying the detector (max. 10 characters) Notes:
(RESIDUAL NUCLEI INFORMATIONS AVAILABLE)
N - Z = M + (NMZ)_min N = M + Z + (NMZ)_min
PROGRAM RDRESN *---------------------------------------------------------------------* * Up to MXRSNC user defined track or coll are allowed * * izrhgh = maximum Z of the scoring (minimum Z: 1) * * imrhgh = maximum M=N-Z-NMZ_min of the scoring * * (minimum M: 1). Note: * * N-Z = M + NMZ_min, N = M + Z + NMZ_min * * itursn = type of binning: 1 = spallation products, * * 2 = low energy neutrons products, * * 3 = all products * * nrursn = region * * vursnc = volume (cm**3) of the detector * * tiursn = scoring name * *---------------------------------------------------------------------* PARAMETER ( MXRSNC = 400 ) CHARACTER*10 TIURSN CHARACTER RUNTIT*80, RUNTIM*32, FILNAM*80 DIMENSION TIURSN(MXRSNC), ITURSN(MXRSNC), NRURSN(MXRSNC), & VURSNC(MXRSNC), IMRHGH(MXRSNC), IZRHGH(MXRSNC) DIMENSION RNDATA(MXRSNC,100,260) WRITE(*,*)' Type the name of the input file:' READ (*,'(A)') FILNAM LQ = INDEX(FILNAM,' ') - 1 OPEN (UNIT=1, FILE=FILNAM, STATUS='OLD', FORM='UNFORMATTED') OPEN (UNIT=2, FILE=FILNAM(1:LQ)//'.txt', STATUS='UNKNOWN') *----------- read and write 1st record --------------------------------- READ (1) RUNTIT, RUNTIM, WEIPRI, NCASE WRITE(2,100) RUNTIT, RUNTIM, NCASE, WEIPRI *------- loop on residual nuclei detector data in the present file ----- DO 1 IRN = 1, MXRSNC READ (1, END=1000) NRN, TIURSN(NRN), ITURSN(NRN), & NRURSN(NRN), VURSNC(NRN), IMRHGH(NRN), IZRHGH(NRN), K IF (ABS(ITURSN(NRN)) .LE. 1) THEN WRITE (2,200) NRN, TIURSN(NRN), NRURSN(NRN), & VURSNC(NRN), IZRHGH(NRN), IMRHGH(NRN) + K, K + 1 ELSE IF (ABS(ITURSN(NRN)) .LE. 2) THEN WRITE (2,300) NRN, TIURSN(NRN), NRURSN(NRN), & VURSNC(NRN), IZRHGH(NRN), IMRHGH(NRN) + K, K + 1 ELSE WRITE (2,400) NRN, TIURSN(NRN), NRURSN(NRN), & VURSNC(NRN), IZRHGH(NRN), IMRHGH(NRN) + K, K + 1 END IF WRITE(2,'(/,A)') ' Z A Residual nuclei' WRITE(2,'(A,/)') ' per cm**3 per primary' READ (1) ((RNDATA(NRN,I,J), I=1,IZRHGH(NRN)), J=1,IMRHGH(NRN)) DO 2 I = 1, IZRHGH(NRN) DO 3 J = 1, IMRHGH(NRN) IF(RNDATA(NRN,I,J) .GT. 0.) & WRITE(2,'(2I4,1P, G15.6)') I, J+K+2*I, RNDATA(NRN,I,J) 3 CONTINUE 2 CONTINUE 1 CONTINUE 1000 CONTINUE 100 FORMAT(/,1X,'*****',2X,A80,2X,'*****',/,/,10X,A32,/,/, & 10X,'Total number of particles followed ',I9,', for a ', & 'total weight of ',1P,E15.8,/) 200 FORMAT (/,3X,'Res. nuclei n. ',I3,' "',A10, & '" , "high" energy products, region n. ',I5, & /,6X,'detector volume: ',1P,E11.4,' cm**3',/ & 6X,'Max. Z: ',I3,', Max. N-Z: ',I3,' Min. N-Z:',I3) 300 FORMAT (/,3X,'Res. nuclei n. ',I3,' "',A10, & '" , "low" energy products, region n. ',I5, & /,6X,'detector volume: ',1P,E11.4,' cm**3',/ & 6X,'Max. Z: ',I3,', Max. N-Z: ',I3,' Min. N-Z:',I3) 400 FORMAT (/,3X,'Res. nuclei n. ',I3,' "',A10, & '" , all products, region n. ',I5, & /,6X,'detector volume: ',1P,E11.4,' cm**3',/ & 6X,'Max. Z: ',I3,', Max. N-Z: ',I3,' Min. N-Z:',I3) END Example: * Calculate residual nuclei produced in an iron slab (region 6) and in a zinc * vessel (region 10). Heavy recoils are transported (option IONTRANS) and scored * at the point where they stop. The new evaporation model is activated to ensure * a better quality of the results. For iron, all residual nuclei are scored. For * zinc, no data are available for low-energy neutrons, so only nuclei produced * by spallation/evaporation are scored. Results are written (formatted) on * logical unit 22 and 23, respectively. *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 MATERIAL 26.0 55.847 7.87 11. 0.0 0. IRON MATERIAL 30.0 65.39 7.133 12. 0.0 0. ZINC ASSIGNMAT 11.0 6.0 9.0 0.0 ! Four Fe slabs ASSIGNMAT 12.0 10.0 0.0 0.0 ! Zn vessel IONTRANS -2.0 PHYSICS 2.0 0.0 0.0 0.0 0.0 0. EVAPORAT RESNUCLEI 3.0 22.0 0.0 0.0 6.0 0. FirstFe RESNUCLEI 1.0 23.0 0.0 0.0 10.0 0. Znvessel |
© FLUKA Team 2000–2024