Last version:
FLUKA 2024.1.0, April 30th 2024
(last respin 2024.1.0)
flair-2.3-0e 06-May-2024

News:

-- New Fluka Major Release
( 06.05.2024 )

FLUKA 2024.1.0 is available.
Flair-2.3-0epy3 adapted


font_small font_med font_big print_ascii

[ <--- prev -- ]  [ HOME ]  [ -- next ---> ]

[ full index ]


10 Low-energy neutrons in FLUKA

Low-energy neutron transport is activated by option LOW-NEUT, but it is requested by defaults with most of the options available with the DEFAULTS command (CALORIMEtry, EET/TRANsmut, HADROTHErapy, ICARUS, NEUTRONS, NEW-DEFAults, PRECISIOn, SHIELDINg). The only exception is the DEFAULTS option EM-CASCAde. However, command LOW-NEUT may be still necessary in order to give information about the cross section library used, or to issue special requests.

10.1 Multigroup neutron transport

Transport of neutrons with energies lower than a certain energy is performed in FLUKA by a multigroup algorithm. The energy boundary below which multigroup transport takes over depends in principle on the cross section library used. This energy is 20 MeV for the 260-group library which is distributed with the code.

In FLUKA, internally there are two neutron energy thresholds: one for high-energy neutrons and one for low-energy neutrons. The high-energy neutron threshold represents in fact the energy boundary between continuous and discontinuous neutron transport. Starting from this release, the former is computed automatically on the basis of the user inputs with options PART-THR and/or LOW-BIAS. Please note that PART-THR no longer controls the transition energy between model and group tretaments for neutrons, but rather it sets the actual lower threshold for neutron transport, regardless if it falls in the group regime or not.

The multi-group technique, widely used in low-energy neutron transport programs, consists in dividing the energy range of interest into a given number of intervals ("energy groups"). Elastic and inelastic reactions are simulated not as exclusive processes, but by group-to-group transfer probabilities forming a so-called "downscattering matrix".

The scattering transfer probability between different groups is represented by a Legendre polynomial expansion truncated at the (N+1)th term, as shown in the equation:

  Sigma_s(g-->g',mu) = Sum_{i=0,N}(2i+1)/(4pi) P_i(mu) Sigma_i(g-->g')

where mu = Omega.Omega' is the scattering angle and N is the chosen Legendre order of anisotropy.

The particular implementation used in FLUKA has been derived from that of the MORSE program [Emm75] (although the relevant part of the code has been completely rewritten). In the FLUKA neutron cross section library, the energy range up to 20 MeV is divided into 260 energy groups of approximately equal logarithmic width (31 of which are thermal).

The angular probabilities for inelastic scattering are obtained by a discretisation of a P5 Legendre polynomial expansion of the actual scattering distribution which preserves its first 6 moments. The generalised Gaussian quadrature scheme to generate the discrete distribution is rather complicated: details can be found in the MORSE manual [Emm75]. The result, in the case of a P5 expansion, is a set of 6 equations giving 3 discrete polar angles (actually angle cosines) and 3 corresponding cumulative probabilities.

In the library, the first cross section table for an isotope (isotropic term P_0) contains the transfer probabilities from each group g to any group g': Sum_{g-->g'}/Sum_g, where Sum_g is the sum over all the g' (including the "in-scattering" term g' = g). The next cross section table provides the P_1 term for the same isotope, the next the P_2 multigroup cross sections, etc.


10.1.1 Possible artefacts

The multigroup scheme adopted in FLUKA is reliable and much faster than any possible approach using continuous cross sections. However, it is important to remember that there are two rare situations where the group approximation could give bad results.

One of such situations may occur when each neutron is likely to scatter only once (e.g. in a very thin foil) before being scored: an artefact then is possible, due to the discrete angular distribution. In practice the problem vanishes entirely, however, as soon as there is the possibility of two or more scatterings: it must be kept in mind, in fact, that after a collision only the polar angle is sampled from a discrete distribution, while the azimuthal angle is chosen randomly from a uniform distribution. In addition, the 3 discrete angles are different for each g --> g' combination and for each element or isotope. Thus, any memory of the initial direction is very quickly lost after just a few collisions.

The second possible artefact is not connected with the angular but with the energy structure of the cross sections used. The group structure is necessarily coarse with respect to the resonance structure in many materials. A resonance in a material present in a dilute mixture or as a small piece cannot affect much a smooth neutron flux (case of so-called "infinite dilution") but if an isotope is very pure and is present in large amounts, it can act as a "neutron sink", causing sharp dips in the neutron spectrum corresponding to each resonance. This effect, which results in a lower reaction rate sigma*phi, is called "self-shielding" and is necessarily lost in the process of cross section averaging over the width of each energy group, unless a special correction is made. Such corrected cross section sets with different degrees of self-shielding have been included in the FLUKA libraries for a few important elements (Al, Fe, Cu, Au, Pb, Bi): but it is the responsibility of the user to select the set with the degree of self-shielding most suitable in each different case. It is worth stressing that non-self-shielded materials are perfectly adequate in most practical cases, because the presence of even small amounts of impurities is generally sufficient to smooth out the effect. On the other hand, in regions of non-resolved resonances the multigroup approach is known to give very good results anyway.

10.2 Pointwise transport

For a few isotopes only, neutron transport can be done also using continuous (pointwise) cross sections. For 1H, 6Li and 10B, it is applied as a user option (above 10 eV in 1H, for all reactions in 6Li, and only for the reaction 10B(n,alpha)7Li in 10B). For the reaction 14N(n,p)14C, pointwise neutron transport is always applied.

10.3 Secondary particle production


10.3.1 Gamma generation

In general, gamma generation by low-energy neutrons (but not gamma transport) is treated in the frame of a multigroup scheme too. A downscattering matrix provides the probability, for a neutron in a given energy group, to generate a photon in each of a number of gamma energy groups (42 in the FLUKA library), covering the range from 1 keV to 50 MeV.

With the exception of a few important gamma lines, such as the 2.2 MeV to calculate the fluence of different radiation fields. transition of Deuterium and the 478 keV photon from 10B(n,alpha) reaction, the actual energy of the generated photon is sampled randomly in the energy interval corresponding to its gamma group. Note that the gamma generation matrix does not include only capture gammas, but also gammas produced in other inelastic reactions such as (n,n').

For a few elements (Cd, Xe, Ar), for which evaluated gamma production cross sections could not be found, a different algorithm, based on published energy level data, has been provided to generate explicitly the full cascade of monoenergetic gammas [Fas01b].

In all cases, the generated gammas are transported in the same way as all other photons in FLUKA, using continuous cross sections and an explicit and detailed description of all their interactions with matter, allowing for the generation of electrons, positrons, and even secondary particles from photonuclear reactions.


10.3.2 Secondary neutrons

In the multigroup transport scheme, the production of secondary neutrons via (n,xn) reactions is taken into account implicitly by the so-called "non-absorption probability", a group-dependent factor by which the weight of a neutron is multiplied after exiting a collision. If the only possible reactions are capture and scattering, the non-absorption probability is < 1, but at energies above the threshold for (n,2n) reaction it can take values larger than 1. Fission neutrons, however, are treated separately and created explicitly using a group-dependent fission probability. They are assumed to be emitted isotropically and their energy is sampled from the fission spectrum appropriate for the relevant isotope and neutron energy. The fission neutron multiplicity is obtained separately from data extracted from European, American and Japanese databases.


10.3.3 Generation of charged particles

Recoil protons and protons from N(n,p) reaction are produced and transported explicitly, taking into account the detailed kinematics of elastic scattering, continuous energy loss with energy straggling, delta ray production, multiple and single scattering.

The same applies to light fragments (alpha,3-H) from neutron capture in 6-Li and 10-B, if pointwise transport has been requested by the user. All other charged secondaries, including fission fragments, are not transported but their energy is deposited at the point of interaction (kerma approximation).


10.3.4 Residual nuclei

For many materials, but not for all, group-dependent information on the residual nuclei produced by low-energy neutron interactions is available in the FLUKA libraries. This information can be used to score residual nuclei, but it is important that the user check its availability before requesting scoring. Fission fragments are sampled separately, using evaluated data extracted from European, American and Japanese databases.

10.4 The FLUKA neutron cross section library

As explained in (3), an unformatted cross section data set must be available for low-energy neutron transport. For a description of the algorithms used for tracking low-energy neutrons, see the beginning of this Chapter. Other useful information can be found in the Notes to options LOW--NEUT, LOW--MAT and LOW--BIAS}. The Legendre expansion used in Fluka is P5, i.e. at each collision the polar scattering angle is sampled from three discrete values, such that the first 6 moments of the angular distribution are preserved (the azimuthal angle is sampled instead from a uniform distribution between 0 and 2*pi). The energy group structure depends on the cross section set used. Here below the group structure of the currently available sets is reported, and a list of the materials they contain.

The default FLUKA neutron cross section library (originally prepared by G. Panini of ENEA [Cuc91]) contains more than 250 different materials (natural elements or single nuclides), selected for their interest in physics, dosimetry and accelerator engineering. This library has a larger number of groups and a better resolution in the thermal energy range in respect to the original one.

The preparation of the library involves the use of a specialised code [NJOY] and several ad-hoc programs written to adjust the output to the particular structure of these libraries. The library is continuously enriched and updated on the basis of the most recent evaluations (ENDF/B, JEF, JENDL etc.). The library format is similar to that known as ANISN (or FIDO) format, but it has been modified to include kerma factor data, residual nuclei and partial exclusive cross sections when available. The latter are not used directly by FLUKA, but can be folded over calculated spectra to get reaction rates and induced activities. More materials can be made available on request, if good evaluations are available. Some cross sections are available in the library at two or three different temperatures, mainly in view of simulations of calorimeters containing cryogenic scintillators. Doppler broadening is taken into account.

Note that the energy groups are numbered in order of DECREASING energy (group 1 corresponds to the highest energy).

The default FLUKA neutron cross section library has 260 neutron groups and 42 gamma groups. Gamma energy groups are used only for (n,gamma) production, since transport of photons in FLUKA is continuous in energy and angle and is performed through the EMF module).

Hydrogen cross sections, which have a particular importance in neutron slowing-down, are available also for different types of molecular binding (free, H2O, CH2).

At present, the FLUKA libraries contain only single isotopes or elements of natural isotopic composition, although the possibility exists to include in future also pre-mixed materials.

Neutron energy deposition in most materials is calculated by means of kerma factors (including contributions from low-energy fission). However, recoil protons and protons from N(n,p) reaction are produced and transported explicitly.

Each material is identified by an alphanumeric name (a string not longer than 8 characters, all in upper case), and by three integer identifiers. Correspondence with FLUKA materials (pre-defined or user-defined) is based on any combination of name and zero or more identifiers. In case of ambiguity, the first material in the list fulfilling the combination is selected. (See command LOW-MAT for more details).

The convention generally used (but there may be exceptions) for the 3 identifiers is:

  • Atomic number
  • Mass number, or natural isotopic composition if negative (exceptions are possible in order to distinguish between data from different sources referring to the same nuclide)
  • Neutron temperature in degrees Kelvin


10.4.1 260 neutron, 42 gamma group library


10.4.1.1} Energy group structure of the 260-neutron, 42-gamma groups data set:

 Neutron    upper       Neutron    upper       Neutron     upper
 group      limit       group      limit       group       limit
 number     (GeV)       number     (GeV)       number      (GeV)

   1     0.02000000      88     1.737739E-3    175      2.187491E-5
   2     0.01964033      89     1.652989E-3    176      2.133482E-5
   3     0.01915541      90     1.612176E-3    177      1.930454E-5
   4     0.01868246      91     1.572372E-3    178      1.703620E-5
   5     0.01822119      92     1.533550E-3    179      1.503439E-5
   6     0.01777131      93     1.495686E-3    180      1.326780E-5
   7     0.01733253      94     1.422741E-3    181      1.170880E-5
   8     0.01690459      95     1.353353E-3    182      1.033298E-5
   9     0.01648721      96     1.287349E-3    183      9.118820E-6
  10     0.01608014      97     1.224564E-3    184      8.047330E-6
  11     0.01568312      98     1.194330E-3    185      7.101744E-6
  12     0.01529590      99     1.164842E-3    186      6.267267E-6
  13     0.01491825     100     1.108032E-3    187      5.530844E-6
  14     0.01454991     101     1.053992E-3    188      5.004514E-6
  15     0.01419068     102     1.002588E-3    189      4.528272E-6
  16     0.01384031     103     9.778344E-4    190      4.307425E-6
  17     0.01349859     104     9.616402E-4    191      4.097350E-6
  18     0.01316531     105     9.536916E-4    192      3.707435E-6
  19     0.01284025     106     9.071795E-4    193      3.354626E-6
  20     0.01252323     107     8.629359E-4    194      3.035391E-6
  21     0.01221403     108     8.208500E-4    195      2.863488E-6
  22     0.01191246     109     7.808167E-4    196      2.746536E-6
  23     0.01161834     110     7.427358E-4    197      2.612586E-6
  24     0.01133148     111     7.065121E-4    198      2.485168E-6
  25     0.01105171     112     6.720551E-4    199      2.248673E-6
  26     0.01077884     113     6.392786E-4    200      2.034684E-6
  27     0.01051271     114     6.081006E-4    201      1.841058E-6
  28     0.01025315     115     5.784432E-4    202      1.665858E-6
  29     0.01000000     116     5.502322E-4    203      1.584613E-6
  30     9.753099E-3    117     5.366469E-4    204      1.507331E-6
  31     9.512294E-3    118     5.233971E-4    205      1.363889E-6
  32     9.277435E-3    119     5.104743E-4    206      1.234098E-6
  33     9.048374E-3    120     4.978707E-4    207      9.611165E-7
  34     8.824969E-3    121     4.735892E-4    208      7.485183E-7
  35     8.607080E-3    122     4.504920E-4    209      5.829466E-7
  36     8.394570E-3    123     4.285213E-4    210      4.539993E-7
  37     8.187308E-3    124     4.076220E-4    211      3.535750E-7
  38     7.985162E-3    125     3.877421E-4    212      2.753645E-7
  39     7.788008E-3    126     3.688317E-4    213      2.144541E-7
  40     7.595721E-3    127     3.508435E-4    214      1.670170E-7
  41     7.408182E-3    128     3.337327E-4    215      1.300730E-7
  42     7.225274E-3    129     3.174564E-4    216      1.013009E-7
  43     7.046881E-3    130     3.096183E-4    217      7.889325E-8
  44     6.872893E-3    131     3.019738E-4    218      6.144212E-8
  45     6.703200E-3    132     2.945181E-4    219      4.785117E-8
  46     6.647595E-3    133     2.872464E-4    220      3.726653E-8
  47     6.592384E-3    134     2.801543E-4    221      2.902320E-8
  48     6.537698E-3    135     2.732372E-4    222      2.260329E-8
  49     6.376282E-3    136     2.599113E-4    223      1.760346E-8
  50     6.218851E-3    137     2.472353E-4    224      1.370959E-8
  51     6.065307E-3    138     2.351775E-4    225      1.067704E-8
  52     5.915554E-3    139     2.237077E-4    226      8.315287E-9
  53     5.769498E-3    140     2.127974E-4    227      6.475952E-9
  54     5.488116E-3    141     2.024191E-4    228      5.043477E-9
  55     5.220458E-3    142     1.925470E-4    229      3.927864E-9
  56     4.965853E-3    143     1.831564E-4    230      3.059023E-9  thermal
  57     4.843246E-3    144     1.742237E-4    231      2.382370E-9  thermal
  58     4.723666E-3    145     1.699221E-4    232      1.855391E-9  thermal
  59     4.607038E-3    146     1.657268E-4    233      1.444980E-9  thermal
  60     4.493290E-3    147     1.616349E-4    234      1.125352E-9  thermal
  61     4.274149E-3    148     1.576442E-4    235      8.764248E-10 thermal
  62     4.065697E-3    149     1.499558E-4    236      8.336811E-10 thermal
  63     3.867410E-3    150     1.426423E-4    237      6.825603E-10 thermal
  64     3.678794E-3    151     1.356856E-4    238      6.250621E-10 thermal
  65     3.499377E-3    152     1.290681E-4    239      5.315785E-10 thermal
  66     3.328711E-3    153     1.227734E-4    240      4.139938E-10 thermal
  67     3.246525E-3    154     1.167857E-4    241      2.826153E-10 thermal
  68     3.166368E-3    155     1.110900E-4    242      1.929290E-10 thermal
  69     3.088190E-3    156     9.803655E-5    243      1.317041E-10 thermal
  70     3.011942E-3    157     8.651695E-5    244      8.990856E-11 thermal
  71     2.865048E-3    158     7.635094E-5    245      6.137660E-11 thermal
  72     2.725318E-3    159     6.737947E-5    246      4.189910E-11 thermal
  73     2.592403E-3    160     6.251086E-5    247      2.860266E-11 thermal
  74     2.465970E-3    161     5.946217E-5    248      1.952578E-11 thermal
  75     2.425130E-3    162     5.656217E-5    249      1.332938E-11 thermal
  76     2.385205E-3    163     5.247518E-5    250      9.099382E-12 thermal
  77     2.365253E-3    164     4.630919E-5    251      6.211746E-12 thermal
  78     2.345703E-3    165     4.086771E-5    252      4.240485E-12 thermal
  79     2.306855E-3    166     3.606563E-5    253      2.894792E-12 thermal
  80     2.268877E-3    167     3.517517E-5    254      1.976147E-12 thermal
  81     2.231302E-3    168     3.430669E-5    255      1.349028E-12 thermal
  82     2.122480E-3    169     3.182781E-5    256      9.209218E-13 thermal
  83     2.018965E-3    170     2.808794E-5    257      6.286727E-13 thermal
  84     1.969117E-3    171     2.605841E-5    258      4.291671E-13 thermal
  85     1.920499E-3    172     2.478752E-5    259      2.929734E-13 thermal
  86     1.873082E-3    173     2.417552E-5    260      2.000000E-13 thermal
  87     1.826835E-3    174     2.357862E-5 lower limit 1.000000E-14

 Gamma      upper       Gamma      upper       Gamma       upper
 group      limit       group      limit       group       limit
 number     (GeV)       number     (GeV)       number      (GeV)

   1     5.000000E-2     15     4.000000E-3     29     5.100000E-4
   2     3.000000E-2     16     3.500000E-3     30     4.500000E-4
   3     2.000000E-2     17     3.000000E-3     31     4.000000E-4
   4     1.400000E-2     18     2.500000E-3     32     3.000000E-4
   5     1.200000E-2     19     2.000000E-3     33     2.000000E-4
   6     1.000000E-2     20     1.660000E-3     34     1.500000E-4
   7     8.000000E-3     21     1.500000E-3     35     1.000000E-4
   8     7.500000E-3     22     1.340000E-3     36     7.500000E-5
   9     7.000000E-3     23     1.330000E-3     37     7.000000E-5
  10     6.500000E-3     24     1.000000E-3     38     6.000000E-5
  11     6.000000E-3     25     8.000000E-4     39     4.500000E-5
  12     5.500000E-3     26     7.000000E-4     40     3.000000E-5
  13     5.000000E-3     27     6.000000E-4     41     2.000000E-5
  14     4.500000E-3     28     5.120000E-4     42     1.000000E-5
                                           lower limit 1.000000E-6


10.4.1.2} List of materials for which cross sections are available in the 260 neutron, 42 gamma group library:

A symbol Y or N in column "RN" refers to availability of information about production of residual nuclei; in column "Gam" to information about gamma production.

       Material                    Temp.  Origin      RN Name      Identifiers  Gam

     H H2O bound natural Hydrogen  296K  ENDF/B-VIIR0 Y  HYDROGEN   1   -2  296  Y
     H CH2 bound natural Hydrogen  296K  ENDF/B-VIIR0 Y  HYDROGEN   1   -3  296  Y
     H Free gas natural Hydrogen   296K  ENDF/B-VIIR0 Y  HYDROGEN   1   -5  296  Y
     H Free gas natural Hydrogen    87K  ENDF/B-VIIR0 Y  HYDROGEN   1   -2   87  Y
     H Free gas natural Hydrogen     4K  ENDF/B-VIIR0 Y  HYDROGEN   1   -5    4  Y
     H Free gas natural Hydrogen   430K  ENDF/B-VIIR0 Y  HYDROGEN   1   -5  430  Y
    1H H2O bound Hydrogen 1        296K  ENDF/B-VIIR0 Y  HYDROG-1   1   +1  296  Y
    1H CH2 bound Hydrogen 1        296K  ENDF/B-VIIR0 Y  HYDROG-1   1  +11  296  Y
    1H Free gas Hydrogen 1         296K  ENDF/B-VIIR0 Y  HYDROG-1   1  +31  296  Y
    1H Free gas Hydrogen 1          87K  ENDF/B-VIIR0 Y  HYDROG-1   1   +1   87  Y
    2H D2O bound Deuterium         296K  ENDF/B-VIIR0 Y  DEUTERIU   1   +2  296  Y
    2H Free gas Deuterium          296K  ENDF/B-VIIR0 Y  DEUTERIU   1  +32  296  Y
    2H Free gas Deuterium           87K  ENDF/B-VIIR0 Y  DEUTERIU   1   +2   87  Y
    3H Free gas Tritium            296K  ENDF/B-VIIR0 Y  TRITIUM    1   +4  296  Y
    3H Free gas Tritium             87K  ENDF/B-VIIR0 Y  TRITIUM    1   +4   87  Y
    He Natural Helium              296K  ENDF/B-VIIR0 Y  HELIUM     2   -2  296  Y
    He Natural Helium               87K  ENDF/B-VIIR0 Y  HELIUM     2   -2   87  Y
    He Natural Helium                4K  ENDF/B-VIIR0 Y  HELIUM     2   -2    4  Y
   3He Helium 3                    296K  ENDF/B-VIIR0 Y  HELIUM-3   2    3  296  Y
   3He Helium 3                     87K  ENDF/B-VIIR0 Y  HELIUM-3   2    3   87  Y
   3He Helium 3                      4K  ENDF/B-VIIR0 Y  HELIUM-3   2    3    4  Y
   4He Helium 4                    296K  ENDF/B-VIIR0 Y  HELIUM-4   2    4  296  Y
   4He Helium 4                     87K  ENDF/B-VIIR0 Y  HELIUM-4   2    4   87  Y
   4He Helium 4                      4K  ENDF/B-VIIR0 Y  HELIUM-4   2    4    4  Y
    Li Natural Lithium             296K  JENDL-3.3    Y  LITHIUM    3   -2  296  Y
    Li Natural Lithium              87K  JENDL-3.3    Y  LITHIUM    3   -2   87  Y
   6Li Lithium 6                   296K  JENDL-3.3    Y  LITHIU-6   3    6  296  Y
   6Li Lithium 6                    87K  JENDL-3.3    Y  LITHIU-6   3    6   87  Y
   7Li Lithium 7                   296K  JENDL-3.3    Y  LITHIU-7   3    7  296  Y
   7Li Lithium 7                    87K  JENDL-3.3    Y  LITHIU-7   3    7   87  Y
   9Be Beryllium 9                 296K  ENDF/B-VIIR0 Y  BERYLLIU   4    9  296  Y
   9Be Beryllium 9                  87K  ENDF/B-VIIR0 Y  BERYLLIU   4    9   87  Y
     B Natural Boron               296K  ENDF/B-VIIR0 Y  BORON      5   -2  296  Y
     B Natural Boron                87K  ENDF/B-VIIR0 Y  BORON      5   -2   87  Y
   10B Boron 10                    296K  ENDF/B-VIIR0 Y  BORON-10   5   10  296  Y
   10B Boron 10                     87K  ENDF/B-VIIR0 Y  BORON-10   5   10   87  Y
   11B Boron 11                    296K  ENDF/B-VIIR0 Y  BORON-11   5   11  296  Y
   11B Boron 11                     87K  ENDF/B-VIIR0 Y  BORON-11   5   11   87  Y
     C Free gas natural Carbon     296K  ENDF/B-VIIR0 Y  CARBON     6   -2  296  Y
     C Free gas natural Carbon      87K  ENDF/B-VIIR0 Y  CARBON     6   -2   87  Y
     C Free gas natural Carbon       4K  ENDF/B-VIIR0 Y  CARBON     6   -2    4  Y
     C Free gas natural Carbon     430K  ENDF/B-VIIR0 Y  CARBON     6   -2  430  Y
     C Graphite bound nat. Carbon  296K  ENDF/B-VIIR0 Y  CARBON     6   -3  296  Y
     N Natural Nitrogen            296K  ENDF/B-VIIR0 Y  NITROGEN   7   -2  296  Y
     N Natural Nitrogen             87K  ENDF/B-VIIR0 Y  NITROGEN   7   -2   87  Y
   14N Nitrogen 14                 296K  ENDF/B-VIIR0 Y  NITRO-14   7   14  296  Y
   14N Nitrogen 14                  87K  ENDF/B-VIIR0 Y  NITRO-14   7   14   87  Y
   16O Oxygen 16                   296K  ENDF/B-VIR8  Y  OXYGEN     8   16  296  Y
   16O Oxygen 16                    87K  ENDF/B-VIR8  Y  OXYGEN     8   16   87  Y
   16O Oxygen 16                     4K  ENDF/B-VIR8  Y  OXYGEN     8   16    4  Y
   16O Oxygen 16                   430K  ENDF/B-VIR8  Y  OXYGEN     8   16  430  Y
   19F Fluorine 19                 296K  ENDF/B-VIR8  Y  FLUORINE   9   19  296  Y
   19F Fluorine 19                  87K  ENDF/B-VIR8  Y  FLUORINE   9   19   87  Y
    Ne Natural Neon                296K  TENDL-10     Y  NEON      10   -2  296  Y
  23Na Sodium 23                   296K  JENDL-3.3    Y  SODIUM    11   23  296  Y
  23Na Sodium 23                    87K  JENDL-3.3    Y  SODIUM    11   23   87  Y
    Mg Natural Magnesium           296K  JENDL-3.3    Y  MAGNESIU  12   -2  296  Y
    Mg Natural Magnesium            87K  JENDL-3.3    Y  MAGNESIU  12   -2   87  Y
  27Al Aluminium 27                296K  ENDF/B-VIIR0 Y  ALUMINUM  13   27  296  Y
  27Al Aluminium 27                 87K  ENDF/B-VIIR0 Y  ALUMINUM  13   27   87  Y
  27Al Aluminium 27                  4K  ENDF/B-VIIR0 Y  ALUMINUM  13   27    4  Y
  27Al Aluminium 27                430K  ENDF/B-VIIR0 Y  ALUMINUM  13   27  430  Y
  27Al Aluminium 27 SelfShielded   296K  ENDF/B-VIIR0 Y  ALUMINUM  13 1027  296  Y
  27Al Aluminium 27 SelfShielded    87K  ENDF/B-VIIR0 Y  ALUMINUM  13 1027   87  Y
  27Al Aluminium 27 SelfShielded     4K  ENDF/B-VIIR0 Y  ALUMINUM  13 1027    4  Y
  27Al Aluminium 27 SelfShielded   430K  ENDF/B-VIIR0 Y  ALUMINUM  13 1027  430  Y
    Si Natural Silicon             296K  ENDF/B-VIR8  Y  SILICON   14   -2  296  Y
    Si Natural Silicon              87K  ENDF/B-VIR8  Y  SILICON   14   -2   87  Y
   31P Phosphorus 31               296K  JENDL-3.3    Y  PHOSPHO   15   31  296  Y
   31P Phosphorus 31                87K  JENDL-3.3    Y  PHOSPHO   15   31   87  Y
     S Natural Sulphur (1)         296K  JENDL-3.3    Y  SULFUR    16   -2  296  Y
     S Natural Sulphur (1)          87K  JENDL-3.3    Y  SULFUR    16   -2   87  Y
    Cl Natural Chlorine            296K  ENDF/B-VIIR0 Y  CHLORINE  17   -2  296  Y
    Cl Natural Chlorine             87K  ENDF/B-VIIR0 Y  CHLORINE  17   -2   87  Y
    Ar Natural Argon               296K  JEFF-3.1     Y  ARGON     18   -2  296  Y
    Ar Natural Argon                87K  JEFF-3.1     Y  ARGON     18   -2   87  Y
    Ar Natural Argon SelfShielded  296K  JEFF-3.1     Y  ARGON     18   -4  296  Y
    Ar Natural Argon SelfShielded   87K  JEFF-3.1     Y  ARGON     18   -4   87  Y
  40Ar Argon 40                    296K  JEFF-3.1     Y  ARGON-40  18   40  296  Y
  40Ar Argon 40                     87K  JEFF-3.1     Y  ARGON-40  18   40   87  Y
  40Ar Argon 40 SelfShielded       296K  JEFF-3.1     Y  ARGON-40  18 1040  296  Y
  40Ar Argon 40 SelfShielded        87K  JEFF-3.1     Y  ARGON-40  18 1040   87  Y
     K Natural Potassium           296K  ENDF/B-VIIR0 Y  POTASSIU  19   -2  296  Y
     K Natural Potassium            87K  ENDF/B-VIIR0 Y  POTASSIU  19   -2   87  Y
    Ca Natural Calcium (2)         296K  ENDF/B-VIIR0 Y  CALCIUM   20   -2  296  Y
    Ca Natural Calcium (2)          87K  ENDF/B-VIIR0 Y  CALCIUM   20   -2   87  Y
  45Sc Scandium 45 (2)             296K  ENDF/B-VIIR0 Y  SCANDIUM  21   45  296  Y
  45Sc Scandium 45 (2)              87K  ENDF/B-VIIR0 Y  SCANDIUM  21   45   87  Y
    Ti Natural Titanium (3)        296K  ENDF/B-VIR8  Y  TITANIUM  22   -2  296  Y
    Ti Natural Titanium (3)         87K  ENDF/B-VIR8  Y  TITANIUM  22   -2   87  Y
     V Natural Vanadium            296K  JENDL-3.3    Y  VANADIUM  23   -2  296  Y
     V Natural Vanadium             87K  JENDL-3.3    Y  VANADIUM  23   -2   87  Y
    Cr Natural Chromium            296K  ENDF/B-VIR8  Y  CHROMIUM  24   -2  296  Y
    Cr Natural Chromium             87K  ENDF/B-VIR8  Y  CHROMIUM  24   -2   87  Y
    Cr Natural Chromium              4K  ENDF/B-VIR8  Y  CHROMIUM  24   -2    4  Y
    Cr Natural Chromium            430K  ENDF/B-VIR8  Y  CHROMIUM  24   -2  430  Y
  55Mn Manganese 55                296K  ENDF/B-VIR8  Y  MANGANES  25   55  296  Y
  55Mn Manganese 55                 87K  ENDF/B-VIR8  Y  MANGANES  25   55   87  Y
  55Mn Manganese 55                  4K  ENDF/B-VIR8  Y  MANGANES  25   55    4  Y
  55Mn Manganese 55                430K  ENDF/B-VIR8  Y  MANGANES  25   55  430  Y
    Fe Natural Iron                296K  ENDF/B-VIR8  Y  IRON      26   -2  296  Y
    Fe Natural Iron                 87K  ENDF/B-VIR8  Y  IRON      26   -2   87  Y
    Fe Natural Iron                  4K  ENDF/B-VIR8  Y  IRON      26   -2    4  Y
    Fe Natural Iron                430K  ENDF/B-VIR8  Y  IRON      26   -2  430  Y
    Fe Natural Iron SelfShielded   296K  ENDF/B-VIR8  Y  IRON      26   -4  296  Y
    Fe Natural Iron SelfShielded    87K  ENDF/B-VIR8  Y  IRON      26   -4   87  Y
    Fe Natural Iron SelfShielded     4K  ENDF/B-VIR8  Y  IRON      26   -4    4  Y
    Fe Natural Iron SelfShielded   430K  ENDF/B-VIR8  Y  IRON      26   -4  430  Y
    Fe Shielding Fe (5% C) SelfSh. 296K  ENDF/B-VIR8  Y  IRON      26   -8  296  Y
    Fe Shielding Fe (5% C) SelfSh.  87K  ENDF/B-VIR8  Y  IRON      26   -8   87  Y
    Fe Shielding Fe (5% C) SelfSh.   4K  ENDF/B-VIR8  Y  IRON      26   -8    4  Y
    Fe Shielding Fe (5% C) SelfSh. 430K  ENDF/B-VIR8  Y  IRON      26   -8  430  Y
    Co Natural Cobalt              296K  ENDF/B-VIIR0 Y  COBALT    27   59  296  Y
    Co Natural Cobalt               87K  ENDF/B-VIIR0 Y  COBALT    27   59   87  Y
    Co Natural Cobalt                4K  ENDF/B-VIIR0 Y  COBALT    27   59    4  Y
    Co Natural Cobalt              430K  ENDF/B-VIIR0 Y  COBALT    27   59  430  Y
    Ni Natural Nickel              296K  ENDF/B-VIR8  Y  NICKEL    28   -2  296  Y
    Ni Natural Nickel               87K  ENDF/B-VIR8  Y  NICKEL    28   -2   87  Y
    Ni Natural Nickel                4K  ENDF/B-VIR8  Y  NICKEL    28   -2    4  Y
    Ni Natural Nickel              430K  ENDF/B-VIR8  Y  NICKEL    28   -2  430  Y
    Cu Natural Copper              296K  ENDF/B-VIR8  Y  COPPER    29   -2  296  Y
    Cu Natural Copper               87K  ENDF/B-VIR8  Y  COPPER    29   -2   87  Y
    Cu Natural Copper                4K  ENDF/B-VIR8  Y  COPPER    29   -2    4  Y
    Cu Natural Copper              430K  ENDF/B-VIR8  Y  COPPER    29   -2  430  Y
    Cu Natural Copper SelfShielded 296K  ENDF/B-VIR8  Y  COPPER    29   -4  296  Y
    Cu Natural Copper SelfShielded  87K  ENDF/B-VIR8  Y  COPPER    29   -4   87  Y
    Cu Natural Copper SelfShielded   4K  ENDF/B-VIR8  Y  COPPER    29   -4    4  Y
    Cu Natural Copper SelfShielded 430K  ENDF/B-VIR8  Y  COPPER    29   -4  430  Y
    Zn Natural Zinc                296K  JENDL-4.0    Y  ZINC      30   -2  296  Y
    Zn Natural Zinc                 87K  JENDL-4.0    N  ZINC      30   -2   87  Y
    Zn Natural Zinc                  4K  JENDL-4.0    Y  ZINC      30   -2    4  Y
    Zn Natural Zinc                430K  JENDL-4.0    Y  ZINC      30   -2  430  Y
    Ga Natural Gallium (2,4)       296K  JEFF-3.1     Y  GALLIUM   31   -2  296  Y
    Ga Natural Gallium (2,4)        87K  JEFF-3.1     Y  GALLIUM   31   -2   87  Y
    Ge Natural Germanium           296K  ENDF/B-VIIR  Y  GERMANIU  32   -2  296  Y
    Ge Natural Germanium            87K  ENDF/B-VIIR  Y  GERMANIU  32   -2   87  Y
  75As Arsenic 75                  296K  ENDF/B-VIIR0 Y  ARSENIC   33   75  296  Y
  75As Arsenic 75                   87K  ENDF/B-VIIR0 Y  ARSENIC   33   75   87  Y
    Br Natural Bromine (2)         296K  ENDF/B-VIIR0 Y  BROMINE   35   -2  296  N
    Br Natural Bromine (2)          87K  ENDF/B-VIIR0 Y  BROMINE   35   -2   87  N
    Kr Natural Krypton             296K  ENDF/B-VIIR0 Y  KRYPTON   36   -2  296  N
    Kr Natural Krypton             120K  ENDF/B-VIIR0 Y  KRYPTON   36   -2  120  N
    Sr Natural Strontium           296K  ENDF/B-VIIR0 Y  STRONTIU  38   -2  296  N
    Sr Natural Strontium            87K  ENDF/B-VIIR0 Y  STRONTIU  38   -2   87  N
  90Sr Strontium 90                296K  ENDF/B-VIIR0 Y  90-SR     38   90  296  N
  90Sr Strontium 90                 87K  ENDF/B-VIIR0 Y  90-SR     38   90   87  N
  89Y  Yttrium 89                  296K  ENDF/B-VIR8  Y  YTTRIUM   39   89  296  N
  89Y  Yttrium 89                   87K  ENDF/B-VIR8  Y  YTTRIUM   39   89   87  N
    Zr Natural Zirconium (2)       296K  ENDF/B-VIIR0 Y  ZIRCONIU  40   -2  296  Y
    Zr Natural Zirconium (2)        87K  ENDF/B-VIIR0 Y  ZIRCONIU  40   -2   87  Y
  93Nb Niobium 93 (2)              296K  ENDF/B-VIIR0 Y  NIOBIUM   41   93  296  Y
  93Nb Niobium 93 (2)               87K  ENDF/B-VIIR0 Y  NIOBIUM   41   93   87  Y
    Mo Natural Molybdenum (2)      296K  EFF-2.4      Y  MOLYBDEN  42   -2  296  Y
    Mo Natural Molybdenum (2)       87K  EFF-2.4      Y  MOLYBDEN  42   -2   87  Y
  99Tc Technetium 99               296K  ENDF/B-VIIR0 Y  99-TC     43   99  296  Y
  99Tc Technetium 99                87K  ENDF/B-VIIR0 Y  99-TC     43   99   87  Y
    Ag Natural Silver              296K  ENDF/B-VIIR0 Y  SILVER    47   -2  296  Y
    Ag Natural Silver               87K  ENDF/B-VIIR0 Y  SILVER    47   -2   87  Y
    Cd Natural Cadmium (2)         296K  JENDL-3.3    Y  CADMIUM   48   -2  296  Y
    Cd Natural Cadmium (2)          87K  JENDL-3.3    Y  CADMIUM   48   -2   87  Y
    In Natural Indium (2)          296K  ENDF/B-VIIR0 Y  INDIUM    49   -2  296  N
    In Natural Indium (2)           87K  ENDF/B-VIIR0 Y  INDIUM    49   -2   87  N
    Sn Natural Tin                 296K  ENDF/B-VIR8  Y  TIN       50   -2  296  N
    Sn Natural Tin                  87K  ENDF/B-VIR8  Y  TIN       50   -2   87  N
    Sb Natural Antimony            296K  ENDF/B-VIIR0 Y  ANTIMONY  51   -2  296  N
    Sb Natural Antimony             87K  ENDF/B-VIIR0 Y  ANTIMONY  51   -2   87  N
  127I Iodine 127                  296K  ENDF/B-VIIR0 Y  IODINE    53  127  296  Y
  127I Iodine 127                   87K  ENDF/B-VIIR0 Y  IODINE    53  127   87  Y
  129I Iodine 129 (2)              296K  ENDF/B-VIIR0 Y  129-I     53  129  296  N
  129I Iodine 129 (2)               87K  ENDF/B-VIIR0 Y  129-I     53  129   87  N
    Xe Natural Xenon (2)           296K  ENDF/B-VIIR0 Y  XENON     54   -2  296  N
    Xe Natural Xenon (2)            87K  ENDF/B-VIIR0 Y  XENON     54   -2   87  N
 124Xe Xenon 124                   296K  ENDF/B-VIIR0 Y  124-XE    54  124  296  N
 124Xe Xenon 124                    87K  ENDF/B-VIIR0 Y  124-XE    54  124   87  N
 126Xe Xenon 126                   296K  ENDF/B-VIIR0 Y  126-XE    54  126  296  N
 126Xe Xenon 126                    87K  ENDF/B-VIIR0 Y  126-XE    54  126   87  N
 128Xe Xenon 128                   296K  ENDF/B-VIIR0 Y  128-XE    54  128  296  N
 128Xe Xenon 128                    87K  ENDF/B-VIIR0 Y  128-XE    54  128   87  N
 129Xe Xenon 129                   296K  ENDF/B-VIIR0 Y  129-XE    54  129  296  N
 129Xe Xenon 129                    87K  ENDF/B-VIIR0 Y  129-XE    54  129   87  N
 130Xe Xenon 130                   296K  ENDF/B-VIIR0 Y  130-XE    54  130  296  N
 130Xe Xenon 130                    87K  ENDF/B-VIIR0 Y  130-XE    54  130   87  N
 131Xe Xenon 131                   296K  ENDF/B-VIIR0 Y  131-XE    54  131  296  Y
 131Xe Xenon 131                    87K  ENDF/B-VIIR0 Y  131-XE    54  131   87  Y
 132Xe Xenon 132                   296K  ENDF/B-VIIR0 Y  132-XE    54  132  296  N
 132Xe Xenon 132                    87K  ENDF/B-VIIR0 Y  132-XE    54  132   87  N
 134Xe Xenon 134                   296K  ENDF/B-VIIR0 Y  134-XE    54  134  296  N
 134Xe Xenon 134                    87K  ENDF/B-VIIR0 Y  134-XE    54  134   87  N
 135Xe Xenon 135                   296K  ENDF/B-VIIR0 Y  135-XE    54  135  296  N
 135Xe Xenon 135                    87K  ENDF/B-VIIR0 Y  135-XE    54  135   87  N
 136Xe Xenon 136                   296K  ENDF/B-VIIR0 Y  136-XE    54  136  296  N
 136Xe Xenon 136                    87K  ENDF/B-VIIR0 Y  136-XE    54  136   87  N
 133Cs Cesium 133                  296K  ENDF/B-VIIR0 Y  CESIUM    55  133  296  Y
 133Cs Cesium 133                   87K  ENDF/B-VIIR0 Y  CESIUM    55  133   87  Y
 135Cs Cesium 135 (2)              296K  ENDF/B-VIIR0 Y  135-CS    55  135  296  N
 135Cs Cesium 135 (2)               87K  ENDF/B-VIIR0 Y  135-CS    55  135   87  N
 137Cs Cesium 137 (2)              296K  ENDF/B-VIIR0 Y  137-CS    55  137  296  N
 137Cs Cesium 137 (2)               87K  ENDF/B-VIIR0 Y  137-CS    55  137   87  N
    Ba Natural Barium (2)          296K  ENDF/B-VIIR0 Y  BARIUM    56   -2  296  N
    Ba Natural Barium (2)           87K  ENDF/B-VIIR0 Y  BARIUM    56   -2   87  N
    La Natural Lanthanum           296K  ENDF/B-VIIR0 Y  LANTHANU  57   -2  296  N
    La Natural Lanthanum            87K  ENDF/B-VIIR0 Y  LANTHANU  57   -2   87  N
    Ce Natural Cerium (2)          296K  ENDF/B-VIIR0 Y  CERIUM    58   -2  296  N
    Ce Natural Cerium (2)           87K  ENDF/B-VIIR0 Y  CERIUM    58   -2   87  N
    Nd Natural Neodymium           296K  ENDF/B-VIIR0 Y  NEODYMIU  60   -2  296  Y
    Nd Natural Neodymium            87K  ENDF/B-VIIR0 Y  NEODYMIU  60   -2   87  Y
    Sm Natural Samarium (2)        296K  ENDF/B-VIIR0 Y  SAMARIUM  62   -2  296  Y
    Sm Natural Samarium (2)         87K  ENDF/B-VIIR0 Y  SAMARIUM  62   -2   87  Y
    Eu Natural Europium            296K  ENDF/B-VIR8  Y  EUROPIUM  63   -2  296  Y
    Eu Natural Europium             87K  ENDF/B-VIR8  Y  EUROPIUM  63   -2   87  Y
    Gd Natural Gadolinium          296K  ENDF/B-VIIR0 Y  GADOLINI  64   -2  296  Y
    Gd Natural Gadolinium           87K  ENDF/B-VIIR0 Y  GADOLINI  64   -2   87  Y
 159Tb Terbium 159                 296K  ENDF/B-VIIR0 Y  TERBIUM   65  159  296  N
 159Tb Terbium 159                  87K  ENDF/B-VIIR0 Y  TERBIUM   65  159   87  N
    Hf Natural Hafnium             296K  JENDL-3.3    Y  HAFNIUM   72   -2  296  Y
    Hf Natural Hafnium              87K  JENDL-3.3    Y  HAFNIUM   72   -2   87  Y
 181Ta Tantalum 181 (2)            296K  JENDL-3.3    Y  TANTALUM  73  181  296  Y
 181Ta Tantalum 181 (2)             87K  JENDL-3.3    Y  TANTALUM  73  181   87  Y
 181Ta Tantalum 181 SelfSh. (2)    296K  JENDL-3.3    Y  TANTALUM  73 1181  296  Y
 181Ta Tantalum 181 SelfSh. (2)     87K  JENDL-3.3    Y  TANTALUM  73 1181   87  Y
     W Natural Tungsten (2)        296K  ENDF/B-VIIR0 Y  TUNGSTEN  74   -2  296  Y
     W Natural Tungsten (2)         87K  ENDF/B-VIIR0 Y  TUNGSTEN  74   -2   87  Y
     W Natural Tungsten (2)          4K  ENDF/B-VIIR0 Y  TUNGSTEN  74   -2    4  Y
     W Natural Tungsten (2)        430K  ENDF/B-VIIR0 Y  TUNGSTEN  74   -2  430  Y
     W Natural Tungsten SelfSh.(2) 296K  ENDF/B-VIIR0 Y  TUNGSTEN  74   -4  296  Y
     W Natural Tungsten SelfSh.(2)  87K  ENDF/B-VIIR0 Y  TUNGSTEN  74   -4   87  Y
     W Natural Tungsten SelfSh.(2)   4K  ENDF/B-VIIR0 Y  TUNGSTEN  74   -4    4  Y
     W Natural Tungsten SelfSh.(2) 430K  ENDF/B-VIIR0 Y  TUNGSTEN  74   -4  430  Y
    Re Natural Rhenium             296K  ENDF/B-VIIR0 Y  RHENIUM   75   -2  296  N
    Re Natural Rhenium              87K  ENDF/B-VIIR0 Y  RHENIUM   75   -2   87  N
    Ir Natural Iridium             296K  ENDF/B-VIIR0 Y  IRIDIUM   77   -2  296  Y
    Ir Natural Iridium              87K  ENDF/B-VIIR0 Y  IRIDIUM   77   -2   87  Y
    Pt Natural Platinum            296K  JEFF-3.1.1   N  PLATINUM  78   -2  296  Y
    Pt Natural Platinum             87K  JEFF-3.1.1   N  PLATINUM  78   -2   87  Y
 197Au Gold 197                    296K  ENDF/B-VIIR0 Y  GOLD      79  197  296  Y
 197Au Gold 197                     87K  ENDF/B-VIIR0 Y  GOLD      79  197   87  Y
 197Au Gold 197 SelfShielded       296K  ENDF/B-VIIR0 Y  GOLD      79 1197  296  Y
 197Au Gold 197 SelfShielded        87K  ENDF/B-VIIR0 Y  GOLD      79 1197   87  Y
 197Au Gold 197 0.1mm SelfShielded 296K  ENDF/B-VIIR0 Y  GOLD      79 2197  296  Y
    Hg Natural Mercury (2)         296K  ENDF/B-VIIR0 Y  MERCURY   80   -2  296  Y
    Hg Natural Mercury (2)          87K  ENDF/B-VIIR0 Y  MERCURY   80   -2   87  Y
    Pb Natural Lead                296K  ENDF/B-VIR8  Y  LEAD      82   -2  296  Y
    Pb Natural Lead                 87K  ENDF/B-VIR8  Y  LEAD      82   -2   87  Y
    Pb Natural Lead SelfShielded   296K  ENDF/B-VIR8  Y  LEAD      82   -4  296  Y
    Pb Natural Lead SelfShielded    87K  ENDF/B-VIR8  Y  LEAD      82   -4   87  Y
 208Pb Lead 208                    296K  ENDF/B-VIR8  Y  208-PB    82  208  296  Y
 208Pb Lead 208 SelfShielded       296K  ENDF/B-VIR8  Y  208-PB    82 1208  296  Y
 209Bi Bismuth 209                 296K  ENDF/B-VIR8  Y  BISMUTH   83  209  296  Y
 209Bi Bismuth 209                  87K  ENDF/B-VIR8  Y  BISMUTH   83  209   87  Y
 209Bi Bismuth 209 SelfShielded    296K  ENDF/B-VIR8  Y  BISMUTH   83 1209  296  Y
 209Bi Bismuth 209 SelfShielded     87K  ENDF/B-VIR8  Y  BISMUTH   83 1209   87  Y
 230Th Thorium 230                 296K  ENDF/B-VIIR0 Y  230-TH    90  230  296  N
 230Th Thorium 230                  87K  ENDF/B-VIIR0 Y  230-TH    90  230   87  N
 232Th Thorium 232                 296K  ENDF/B-VIR8  Y  232-TH    90  232  296  Y
 232Th Thorium 232                  87K  ENDF/B-VIR8  Y  232-TH    90  232   87  Y
  233U Uranium 233                 296K  ENDF/B-VIIR0 Y  233-U     92  233  296  Y
  233U Uranium 233                  87K  ENDF/B-VIIR0 Y  233-U     92  233   87  Y
  234U Uranium 234                 296K  ENDF/B-VIIR0 Y  234-U     92  234  296  Y
  234U Uranium 234                  87K  ENDF/B-VIIR0 Y  234-U     92  234   87  Y
  235U Uranium 235                 296K  ENDF/B-VIIR0 Y  235-U     92  235  296  Y
  235U Uranium 235                  87K  ENDF/B-VIIR0 Y  235-U     92  235   87  Y
  238U Uranium 238                 296K  ENDF/B-VIIR0 Y  238-U     92  238  296  Y
  238U Uranium 238                  87K  ENDF/B-VIIR0 Y  238-U     92  238   87  Y
 239Pu Plutonium 239               296K  ENDF/B-VIIR0 Y  239-PU    94  239  296  Y
 239Pu Plutonium 239                87K  ENDF/B-VIIR0 Y  239-PU    94  239   87  Y
 241Am Americium 241               296K  ENDF/B-VIIR0 Y  241-AM    95  241  296  Y
 241Am Americium 241                87K  ENDF/B-VIIR0 Y  241-AM    95  241   87  Y
 243Am Americium 243               296K  ENDF/B-VIIR0 Y  243-AM    95  243  296  Y
 243Am Americium 243                87K  ENDF/B-VIIR0 Y  243-AM    95  243   87  Y

(1: Kerma factor not very satisfactory, particularly for 36S

(2: Bad kerma factor

(3: Residual nuclei obtained from JENDL-3.3

(4: Residual nuclei obtained from ENDF/B-VIIR0

© FLUKA Team 2000–2024

Informativa cookies